BIOENERGY ESE 404 Resources, Production Applications, & Economics

Prof. Dr. Khairy Hussein Assoc. Prof. Dr. Hanaa Abulmagd Energy Department 1st term, 2018-2019

Types of Biofuels 3) Biogas

Biogas is a clean and efficient alternative fuel. It is a mixture of: CH_4 (major constituent 65%)– CO_2 – H_2 – H_2S – NH_3 . **Synthesis**: it is produced by a process called (**digestion**) which is an anaerobic breakdown of biodegradable materials such as manure, sewage, green waste, plants with bacteria (methanogens) in the absence of oxygen. It is produced in a closed system called digester. The heating value of biogas is about 60% of natural gas and about 25% of propane.

Production steps of biogas

The anaerobic decomposition of organic matter occurs in a four-step process:-

1- **Hydrolysis**: the slowest step in which the <u>hydraulic</u> bacteria convert complex organic materials into simple liquid materials.

2- Acidogenesis: <u>acidogenic</u> bacteria convert the sugars and amino acids to alcohol and fatty acids.

3- Acetogenesis: <u>acetogenic</u> bacteria convert fatty acids and alcohols into H_2 , CO_2 and acetic acid.

4- Methanogenesis: methanogenic bacteria convert the H_2 and acetic acid to methane gas and CO_2 .

Types of digesters:

Mesophilic digester: is a kind of biodigester that operates in temperatures between 20°C – 40°C, typically 37 °C. It is the most used kind of bio-digesters in the world (90%).

Thermophilic digester: is a kind of bio-digester that operates in temperatures above 50 °C. It does not need agitation- faster in fermentation than a mesophilic digester.

Factors affecting the biogas production:

 Composition of the raw materials – load - digester type mixing way - quality of methanogens – temperature.

Design of Extra Weight **Biogas digesters** Kitchen / Organic waste Blogas outlet Slurry / Manure outlet Access Influent Effluent channel channel Gas holding Tank Anaerobic reactor volume Sludge sediment **Digester** & **Retention Tank Biogas Stove**

To know how to design digester for biogas synthesis, visit this link: <u>http://www.instructables.com/id/Biogas-Digester/</u>

Advantages of Biogas

- The technology of biogas production is widely used in farm area, thus:
- It reduces the bad smell and protects water resources.
- It improves fertilizer value of manure.
- It reduces global climate change because if the manure is left to decompose it releases two main gases that changes the climate:
- NO_2 (warms the atmosphere 310 times more than CO_2), CH_4 (warms atmosphere 21 times more than carbon dioxide.
- Disadvantages: Biogas has corrosive nature and its storage is not practical

Applications of Biogas

1- To produce Electricity 2- Heating purposes

3- Methane can be combusted directly or converted to bioalcohols.

4- Millions of cows able to produce one hundred billion kilowatt hours of electricity, enough to power millions of homes.

Biogas for better life

Types of Biofuels 4) Syngas

Short name for synthetic gas that made up mainly of H₂ and CO. It contains also small quantity of CO₂ and other gases.

Synthesis: produced by partial combustion of natural gas or biomass, and its production is a combination of two main processes:

A) pyrolysis, B) gasification

Pyrolysis: decomposition of organic material by burning in absence of oxygen. It is used when the feedstock is solid biomass.

Gasification: partial combustion of the biomass in a low oxygen environment, then passing of hot steam:

$CH_4 + H_2O \rightarrow 3H_2 + CO$

Benifits of syngas:

✓Generation of renewable power

✓Conversion of problematic wastes to useful fuels

✓ Reduction in carbon emissions

Applications :

Syngas is an intermediate compound that holds many valuable uses:

- 1- to produce methanol.
- 2- hydrogen can be used in fuel cells for generating electricity.
- 3- provided efficient production of other chemicals

$$\begin{array}{ccc} CO \\ H_2 \end{array} \longrightarrow \begin{array}{c} \text{Methanation} \\ \text{reactor} \end{array} \longrightarrow \begin{array}{c} CH_4 \\ CO_2 \\ H_2 O \end{array}$$

Thermal Gas Generation in Dakahlia Plant

General Conversion Processes in Biofuel Production

To obtain biofuel from biomass, there are three types of conversion:

1) **Biological conversion**

- Fermentation: (production of bioalcohol)
- Anaerobic digestion (biogas such as methane)
- Anaerobic respiration (bio-battery)

2) Chemical conversion

Trans-esterification (biodiesel)

3) Thermal conversion (syngas)

- Combustion
- Gasification
- Pyrolysis

Biomass-to-Bioenergy Routes

Practice exercises on bio-alcohols production

End of 1st part Dr. Hanaa Abulmagd